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Abstract — This paper describes features and the feature 
extraction processing which were applied for recognising 
gestures by artificial neural networks. The features were 
applied for two cases: time series of luminance rate images 
for hand gestures and time series of pure grey-scale images 
of the facial mouth region. A focus will be on the 
presentation and discussion of the application of 2-
dimensional Fourier transformed images both for 
luminance rate feature maps of hand gestures and for 
greyscale images of the facial mouth region. Appearance-
based features in this context are understood as features 
based on whole images, which perform well for highly 
articulated objects. The described approach was used based 
on our assumption that highly articulated objects are of 
great interest for musical applications.

I. SPATIAL APPEARANCE BASED FEATURES 

A. Feature Maps of Luminance Rate (Optical Flow 
Grade Zero)

The visual energy of two consecutive video frames may 
be used as a feature map for the recognition of a visual 
time series such as hand gestures. This approach is 
understood as luminance rate. Different denotations are 
used for the luminance rate feature, such as optical flow of 
grade zero [23], difference image or visual energy. This 
has been used in several approaches both in scientific-
technical and musical/artistic environments [31], [32].
Advantages of this approach are: 
• Masking the (stationary) background 
• Robustness against variations of lighting such as:

o Intensity
o Contrast 
o Light Temperature

• There are some suggestion that the approach is close 
to biological mechanisms (i.e. the high attention to 
motion in the visual cortex)

• Fast to compute
The drawbacks are:

• Motion in the background scene detracts from the 
observed object

• Related motions detract from the target (e.g. a 
motion of the hand is often combined with a motion 
of the whole arm)

• Luminance rate is zero for still objects
• There is a lower significance for slow moving 

objects

Fig. 1: Tracked left hand with attention rectangle (image size 640x240)

Fig. 2: Luminance rate feature for 
attention rectangle of Fig. 1

(frame size 160x80)

Fig. 3: Luminance rate feature for 
attention rectangle of Fig. 1

(down-sample dimensions 32x32)

A modified Cam-Shift algorithm may be used to focus 
the attention on the relevant part of the video stream i.e. 
the hand as shown in Fig. 1. For the context of this work 
this region of attention is named the Attention Rectangle 
(AR) or Region of Interest (ROI) as used in OpenCV [23]. 
The luminance rate image may be computed from the 
difference of two consecutive grey scale images of the AR 
according to Eq. 1.

LumaRate(xAR , yAR ,t) = Luma(xAR , yAR ,t) Luma(xAR , yAR ,t 1)

Eq. 1: Computation of the Luminance Rate, 
xAR,yAR: spatial coordinates of the Attention-Rectangle

B. Feature Maps of pure Grey Scale Images 
(Mouth Gestures)

Images of mouth gestures were used to investigate the 
recognition of static poses by recognition algorithms such 
as artificial neural networks. This was motivated by the 
prospect that, in addition to using energy as an intuitive 
control for musical parameters, position and force were 
both associable with stable gesture states. Furthermore 
gestures of the facial mouth region differ in the form of 
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the gesture object (the mouth region) and the type of 
motion, speed, background and position. 
Facial features of the mouth region are expected to have 
• Fewer rotational variation in the image frame 

(head is kept up)
• Fewer background variations (faces are similar)
• Gesture variations are more of a textural nature 

(with similar background, the face)
An initial estimate identified four feature types to be 

considered for use with a gesture recognition algorithm as 
shown in Table 1

Pro Con
Extracted 
Colour 
Feature

Clear feature regions 
(white or grey on 
surrounding black), 
appearance similar to 
luminance rate of 
hand gestures 

Unstable border 
regions
unstable position
unnatural feature: 
lips have to be 
coloured

Grey Scale 
Image

Fast, reduced 
complexity, 
poses possible

Problems of 
variations of light 
intensities, shading, 

Edge 
Extraction

Fast computation,
Increased robustness 
against variations of 
light, background, 
colour

Tolerant to shading
View relevant pixels

Luminance 
Rate

Approach similar to 
hand gestures

Low feature intensity 
due to slow motion 
of the gestures and 
more textural 
motions

Table 1: Considerations on features for mouth gestures

Assuming a coloured marker for tracking the mouth 
region, a colour criterion may be used as shown in Fig. 4. 
The resulting images of the AR are similar to images 
produced by the luminance rate: a blob or cluster with a 
high intensity in the centre region of the AR surrounded 
by pixels with a low or zero intensity as shown in Fig. 6
and in Fig. 7. Alternatively a grey scale image may be 
used to provide the whole image structure of the AR as 
shown in Fig. 5. A third alternative is to extract edges of 
the image for example by using a Sobel operator as shown 
in Fig. 9. The fourth choice, the luminance rate as shown 
in Fig. 8, was ruled out due to its reduced intensity. 

Fig. 4: Video Image for gesture grinning (640x240 pixels)
AR tracked with green marker

Fig. 5: Pure greyscale image of 
AR (120x60) of Fig. 4

Fig. 6: Green colour feature of 
AR of Fig. 5

Fig. 7: AR of Fig. 4 keyed by 
green colour

Fig. 8: Luminance Rate feature 
for AR of Fig. 4

Fig. 9: Edge feature by Sobel 
operator threshold 0.77 of AR of

Fig. 4

Fig. 10: Pure greyscale image of 
AR of Fig. 4, downsampled to 

30x30 pixels

To provide an AR for the mouth region, similar to the 
approach for hand gestures, a Cam-Shift algorithm was 
used. Due to the relatively low visual energy of mouth 
gestures, as well as the aim to investigate static poses, a 
distinct colour for tracking the mouth and providing the 
coordinates of the AR was chosen. 

The colours were selected to ensure that the marked grey 
scale images should, as far as possible, have similar 
properties to unmarked grey scale images. This was based 
on the intention of using the marked images for 
approaches, which were not based on colour markers. 

II. APPLICATION OF APPEARANCE BASED FEATURES 
FROM SPATIAL FOURIER TRANSFORMED IMAGES

Two dimensional spatial frequency transformations are 
widely used in image processing. The common JPEG 
image compression is based on a spatial Discrete Cosine 
Transformation (DCT) also used in MPEG-2 coding of 
moving images [18]. Wavelet transformations for images 
offer high compression rates [26].

In general, transformations provide the advantage of 
describing data in a different space, which has distinct 
properties. For example a one-dimensional temporal 
Fourier transformation (Eq. 2 and Eq. 5) converts an 
audio signal into a magnitude and phase spectrum (Eq. 3
and Eq. 4) providing a means of analysis in addition to 
applications, which are not possible in the time-domain 
[5]. A complex harmonic oscillation convolved with the 
time-domain signal to achieve the Fourier transformation 
splits the original audio signal into an intensity dependent 
real part and a time dependent imaginary part. 
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( )F = 1
2 ( t )f j te dt

Eq. 2: Continuous one-dimensional Fourier transformation

M( ) = Imag2(F( )) + Re al2(F( ) )

Eq. 3: Magnitude of 1d-transformed Fourier transformed

P( ) = tan 1 Imag(F( ))
Re al(F( ))

Eq. 4: Phase of 1d-transformed Fourier transformed

kF = xnx
n=1

N
j 2 kn

Ne
Eq. 5: Discrete one-dimensional Fourier transformation

In the temporal frequency domain (audio) this property 
appears in form of a magnitude spectrum where single 
spectral lines contain no information about their temporal 
position and the phase spectrum where the temporal 
position (the phase) of the spectral line is given but with 
no information about its intensity. An interesting 
application of this is the Mammut software [22].

Based on this split representation of the original signal, 
further analysis and processing may be undertaken such as 
data reduction through disregarding irrelevant components 
or filtering by multiplication of a desired magnitude 
spectrum.

Analogous to the one-dimensional case, the two-
dimensional Fourier transformation is formulated 
according to 

Eq. 6 and its magnitude and phase spectra according to 
Eq. 7 and Eq. 8.

F(u,v) = f (x, y)e j 2 (ux+vy )dxdy

Eq. 6: Two-dimensional continuous Fourier transformation

M(u,v) = Imag2(F(u,v )) + Re al2(F(u,v ) )

Eq. 7: Magnitude M of 2d-Fourier transformed 

P(u,v) = tan 1 Imag(F(u,v ))
Re al(F(u,v ))

Eq. 8: Phase P of 2d-Fourier transformed 

As for the one-dimensional Fourier transformation, fast 
versions of the discrete formulation are available [4], [12]. 
The open source package “Fastest Fourier Transformation 
in the West” [12] provides computation of 
multidimensional FFTs at low CPU costs and unrestricted 
dimension sizes such as dimensions different from powers 
of two. 

Two properties of the two-dimensional spatial 
transformation are of main interest: 
• The separation of an image in an intensity based 

magnitude spectrum and a position based phase 
spectrum should increase the position independence 
of a later applied recognition [6]

• A possible reduction to relevant portions of the spatial 
image spectrum 

Other transformations such as Wavelet or Gabor 
transformations may improve other areas of the 
recognition problem, such as independency of rotation, 
size and shading. A more complete description of the 
properties of two-dimensional Fourier transformations 
may be found in [4]. 

A. Image Representation based on 2D-FFT
A Fourier transformed image in general is displayed as a 

magnitude spectrum with interchanged quadrants shifting 
the low frequencies to the centre of the image and the high 
frequencies to the borders as shown in Fig. 11 and Fig. 12. 
As outlined previously, the 2d- Fast Fourier 
Transformation has the property that positional 
information in an image is represented in the phase 
spectrum of the image which can be used to achieve an 
image representation where the position constraints are 
less important leading to a gradual position independence.

Fig. 11: Rectangle in image Fig. 12: Transformed of 
rectangle 

Fig. 13: Shifted Rectangle Fig. 14: Transformed of 
shifted rectangle

Image compression is achievable by omitting higher 
frequencies of the spatial image spectrum [4]. This is an 
alternative to the pixel-wise smoothing and down 
sampling algorithm used in the spatial domain The overall 
image of the object (hand, mouth) is still preserved for the 
FFT compression whereas in the down sampling version 
the image tends to turn into a noisy disturbed region.  
Drawbacks of this are increased computation operations, 
such as:

• Computation of the 2d-FFT
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• Computation of the magnitude

• Data handling

Due to the real value input of a grey-scale image, the 
resulting magnitude spectrum of an FFT is symmetric 
which was incorporated in the current approach by only 
using one half of the magnitude spectrum. Images of 
transformed images from my implementation show only 
one half of the spectrum e.g. Fig. 17.

B. 2D-FFT Window
A windowing image, which smoothes the edges of the 

spatial FFT area, reduces the influence of shading and 
translational variations on the spectrum of the image. The 
windowing image is multiplied with the AR prior to the 
FFT. A similar approach is described by [14]. As a first 
approach I used windows with linear transitions as shown 
in Fig. 15. The width of the transition regions is 15 pixels 
for horizontal and vertical borders. Other window types 
such as such as a Hanning or Hamming window may be 
considered. 

Fig. 15: FFT-window (120x60), with linear transitions (15 pixels)

An increased width of the transition borders of the 
window will increase the shift invariance of the 
transformed greyscale image as long as the image contains 
frequencies in the border regions. The windowing may be 
seen as impressing a single blob shape onto a greyscale 
image. For blob like images such as luminance rate 
images the windowing will have a less significant role. 

C. Implication of Intensity Normalisation of Images to 
their Magnitude Map 

To deal with overall varying contrast and light 
conditions a normalization of the mean image intensity 
was applied (Eq. 9 and Eq. 10). A resulting pumping 
effect of the intensity of the image was accepted. A 

temporal smoothing of the image mean I t  may be 
considered to reduce this effect. Fig. 21 shows the Fourier 
magnitude map of the normalised Fig. 20. 

I t =
It (x, y)

x= 0

X 1

y= 0

Y 1

X *Y

Eq. 9: Mean Intensity I t of an Image with dimensions X, Y and pixel 
intensity I(x,y,t)

Int (x,y) = I(x,y)t I t 1

Eq. 10: Normalised intensity In(x,y,t) of a pixel

Due to the subtraction of I t , resulting images may have 
a negative value. In fact Eq. 10 may be seen as a DC 

offset removal, shifting the zero plane into the middle of 
the spatial waveforms. For a following Fourier 
transformation this has no disturbing effects, but to 
display the resulting values they have to be shifted again 
into the positive domain. This has to be considered when 
analysing normalised images such as Fig. 20. From the 
above images it is not obvious whether an intensity 
normalised image sequence is more robust against overall 
intensity changes or shading if the images are high-pass 
filtered. For this a pattern-set was created in which the low 
frequency row and column was suppressed, but without an 
intensity normalisation.

Image (120x60 points) Transformed (61x60 
points)

Fig. 16: Pure greyscale image of AR of 
Fig. 4

Fig. 17: FFT of Fig. 16

Fig. 18: Windowed image
Fig. 19: FFT of Fig. 18

Fig. 20: Windowed and removed DC 
offset 

Fig. 21: FFT of Fig. 20

Table 2: Transformed images through applied processing stages

D. Shift Invariance through Omitting Spatial Phase 
Spectrum 

To exploit the shift invariance of the magnitude 
spectrum the 2d phase spectrum of the image was omitted. 

E. Data Reduction by Frequency Truncation: 2D High-
Cut Filter

To achieve a desired data reduction the magnitude of a 
transformed image was truncated by pruning high 
frequency areas as described by [4]. There the author 
claims a high image reduction by punching out the centre 
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portion of the transformed image. This procedure can be 
seen to omit all high frequent information of the image, 
which is similar to spatial smoothing of the original 
image. It is assumed that high frequency areas carry less 
important information and so can be omitted while 
preserving the major characteristics of the image. The 
amount of data reduction required is primarily relevant to 
the size of the training data and the time required to train 
the neural network. Since this work aims to achieve a real 
time application, CPU costs are shifted from the 
computation size of the neural network to the computation 
of the 2D-FFT.

For the case of hand gestures, experiments with different 
high cut filters with varying cutoff-areas have been 
undertaken, showing that a great amount of data reduction 
is achievable while preserving the information necessary 
for recognition of objects by an artificial neural network.

Dimensions 
u,v

Number of 
Feature 
points

Reduction relative to 
original image size 

(160x80=12800 pixels)
160x80 12800 0%
32x32 1024 92,0 %
16x16 256 98,0 %

8x8 64 99.5 %
4x4 8 99.9375 %

Table 3: Size of truncated magnitude spectrum and achieved data 
reduction 

F. Spatial Resolution and Aliasing
Further optimisation may be considered such as 

applying a 2d-FFT with a reduced number of points. In 
this case the image has to be filtered before the 
transformation to avoid aliasing in the lower frequency 
areas. In the current approach aliasing is avoided by 
transforming the image of the AR using the original image 
resolution and then truncating the high frequency areas.

G. Reduction of Variations caused by Shading: Low Cut 
Filtering

Variations of gradual shading may be simulated through 
the multiplication of an intensity ramp matrix to the 
source image. This can be seen as the superposition of a 
low frequency wave with a wavelength of a quarter of the 
relevant image size and a phase according to the direction 
of the ramp. A whole window with a shading function 
from light (left) to black (right) has a magnitude of a 
straight horizontal line. It may be interpreted that the 
shading brings out the windowing artefacts of the FFT but 
only in the x direction due to the sharp edges at the lower 
and upper border of the window from dark to light.

To generalize the extracted spatial frequency features 
concerning shading variations the low frequency areas of 
the transformed images were suppressed, which is 
equivalent to a low cut filtering.

Above assumptions are confirmed using a Max/Jitter 
patch to resynthesise mean intensity normalized images. 
The visual results of synthetically shaded image were 
compared to determine approaches to how to treat low 
frequency components such as dropping the whole lowest 

frequency row and column (x = 0, y = 0 to N; and x = 0 to 
N, y = 0) or dropping of only 2 low frequencies.( (x=0, 
y=0 and x = N-1, y = 0). Fig. 23: which is not shaded and
not normalised differs only slightly from Fig. 27 (not 
shaded, normalised) due to the zeroing of the low 
frequencies where most of this information is coded.

Image (120x60 pixels) Transformed and truncated high 
frequencies and zeroed low 
frequencies (16x16 points)

Fig. 22: Not shaded, not 
normalised

Fig. 23:

Fig. 24: Shaded (darker left side) 
not normalised

Fig. 25

Fig. 26: Not shaded normalised Fig. 27

Fig. 28: Shaded normalised Fig. 29

Table 4: Influence of shading and normalisation on the magnitude 
spectrum

H. Grouping of Frequency Areas
To further reduce data while preserving relevant content 

as far as possible, a grouping of frequency groups into 
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frequency bins is possible. Comparable methods are used 
in frequency based coding or visualisation of audio 
signals. The size and number of bins were heuristic and 
led by the assumption that the relevance of single 
frequencies is more important for lower frequencies than 
for higher, this assumption is analogue to human audio 
perception which is closer to a logarithmic scale than the 
linear scale implied by the Fast Fourier Transformation. 

I. Logarithmic Coding of Frequency Values
In the image space a pixel is assumed to be an 8 bit 

value for one colour channel, which holds for a wide 
range of current consumer and low-end professional video 
devices. This results in a minimal resolution of 1/255 
equivalent to 0.003921568627. To compress the data 
value range in the frequency domain, a logarithmic scaling 
of the values was used offering the possibility to use the 
negative values for the input neurons of the neural 
network. The logarithmic scaling can also be seen to 
stretch the value range between 0.0 and 1.0 (from negative 
infinity to 0) and to compress the value range above 1. 
To avoid exceptions (NAN) during the computation of the 
logarithm frequency values with value 0.0 an offset is 
added to all frequency values F(u,v).

Flog(u,v) = log10(F(u,v) + a) a =1.0, a <<1.0

Eq. 11: Log frequency

The offset a=1.0 eliminates the negative log values, 
whereas a very small offset (a<<1.0) preserves negative 
values, but introduces large negative frequency values.

J. Variations of Image Contrast
Contrast variations have to be considered for different 

camera and lighting setups. Contrast variations relevant 
for the recognition are variations in the AR, resulting in 
the need to measure the ARs contrast for an image 
sequence. 

1) Contrast Modification for Pure Grey Scale Images
Modification of contrast of one image was implemented 

according to Eq. 12 and Eq. 13.

E(t0) = P(x, y,t0)
x= 0

X

y= 0

Y

Eq. 12: Mean Intensity E(t0) at time t0 of an image 
(X=120, Y=60)

Pc (x, y,t0) = P(x,y, t0) E(t0( )*C f + E(t0)

Eq. 13: Contrast modification of Pixel P(x,y,t0) to Pc(x,y,t0), 
Cf contrast modification factor: 1/Cf ~ Pmax-Pmin

2) Contrast Modification for Luminance Rate Images
For luminance rate images generated from difference 

images a contrast transformation can be derived directly 
from he subtraction of the mean image, assuming small 
and slow variations of the image content. 

PLRc (x, y,t0) = Pc (x, y,t0) Pc (x,y, t 1)

Eq. 14: Contrast modification for difference images

  E(t0) E(t 1) <<1.0 E(t0) E(t 1)

Eq. 15: Slow changing image mean E(t)

C f (t0) C f (t 1)

Eq. 16: Resulting similar contrast factor Cf

For slow temporal changes of image content contrast 
variations of luminance rate images are small (Eq. 16). 
This leads to a more robust recognition of luminance rate 
feature patterns distorted with contrast variations 
compared to greyscale patterns
The application of an optimised normalisation and 
contrast adoption algorithm and the reduction of the 
resilience to shadow casts should improve the detection 
performance. Extending the training pattern set by using 
images with variations of the shadow cast and aspect 
should reduce the effect of shadow cast significantly.

K. Appearance-Based 2D-FFT:
Summary of Algorithm Steps

Following list summarises the processing steps to 
generate a pattern frame which was fed to the TDNN:

1) Tracking of the facial mouth region
2) Conversion of the image of the attention 

rectangle to a greyscale intensity image
3) Normalisation (DC-Offset removal, contrast 

balance)
4) Multiplication of 2d-window (shift invariance)
5) 2d-FFT
6) Computation of the 2d-magnitude
7) Low-cut filtering (shading)
8) High-cut filtering (data reduction and 

smoothing)

L. Results
To verify the functionality of the process Time Delay 

Neural Networks were trained with a pattern set generated 
from grey-scale images of 120x60 pixels of the mouth 
region, tracked by green marked lips. The high frequency 
areas of the magnitude spectrum of the transformed 
images were truncated to 16x16 points. The two lowest 
frequency points were zeroed for all patterns. The network 
was tested using a movie with recorded test gestures. The 
overall impression of the resulting recognition was very 
good and is discussed below:
• Data Reduction: The truncated 16x16 sized feature 

maps were able to provide enough content for the 
recognition algorithm to recognise the gestures of 
the set which is equivalent to data reduction of 
96.55%

• Transversal shift invariance: In contrast to the 
untransformed processing the windowed and phase-
less transformed feature maps provided shift 
robustness of about 7 to 10 pixels and more, 
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depending on the width of the window borders and 
the content of the image.

• Intensity variations: The intensity normalised 
magnitude spectrum provided a large generalisation 
of synthetic (movie brightness) variations of light 
intensity such as almost dark to very light.

• Gradual shading: The low cut filter applied though 
zeroing two frequency points provided robustness 
against synthetic shading as far as the shading did 
not obscure relevant parts of the image. For 
example, shading the right side of the mouth in a 
right side smirking gesture prevented the network 
recognition. 

• Lighting contrast: Although the intensity 
normalisation and the intensity variations of the 
training patterns increased robustness against 
contrast variations, the recognition was resilient to 
contrast variations

• Shadows: The network was highly resilient to 
variations in the casting of shadows caused, for 
example, by a different lighting position. An 
increased size of the low frequency cut area 
significantly improved the performance of the 
overall recognition but reduced the ability of the 
network to distinguish between gestures.

• Performance and CPU costs: Although the 
transformation and related processing increased the 
cpu costs the Max/Msp implementation of the 
system performs in real time (25 fps) on a 1.5GHz 
G4 Powerbook using an IEEE 1394 video input 
device.

• Luminance rate: Due to the increased robustness of 
the luminance rate against gradual shading, the low 
frequency cut filtering can be omitted. Furthermore 
position variations of the trained gestures (gestures 
recorded at 5 different positions) are assumed to 
have provided an increased robustness against 
variations of shadow casts by different light 
conditions.

III. CONCLUSIONS

In this paper the features and feature extraction process 
were described both for pure grey-scale images and 
luminance rate images. Based on previous applied 
processing methods, the approach to using Fourier 
transformed images for both cases were described in 
detail. The results showed that the transformation based 
approach is a valid tool to:
• Reduce the data while retaining relevant content for 

the gesture recognition
• Increase the shift invariance of the recognition
• Provide features for gesture recognition based on 

greyscale images
• Provide feature extraction in real time
Problems may be addressed as follows:
• The ANN recognition algorithm showed the 

tendency to interchange gestures differing mainly in 
their motion direction 

• The recognition algorithm showed an increased 
sensitivity to variations of shadow casts caused by 
lighting variations

• The recognition is sensitive to contrast variations
For the integration into an interactive computer music 

environment appearance based features of Fourier 
transformed images may be combined successfully with 
artificial neural networks to recognise gestures of the hand 
or gestures of the facial mouth region
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